InterviewStack.io LogoInterviewStack.io
đŸ“ˆ

Growth & Business Optimization Topics

Growth strategies, experimentation frameworks, and business optimization. Includes A/B testing, conversion optimization, and growth playbooks.

Experimentation and Product Validation

Designing and interpreting experiments and validation strategies to test product hypotheses. Includes hypothesis formulation, experimental design, sample sizing considerations, metrics selection, interpreting results and statistical uncertainty, and avoiding common pitfalls such as peeking and multiple hypothesis testing. Also covers qualitative validation methods such as interviews and pilots, and using a mix of methods to validate product ideas before scaling.

40 questions

A and B Test Design

Designing and running A and B tests and split tests to evaluate product and feature changes. Candidates should be able to form clear null and alternative hypotheses, select appropriate primary metrics and guardrail metrics that reflect both product goals and user safety, choose randomization and assignment strategies, and calculate sample size and test duration using power analysis and minimum detectable effect reasoning. They should understand applied statistical analysis concepts including p values confidence intervals one tailed and two tailed tests sequential monitoring and stopping rules and corrections for multiple comparisons. Practical abilities include diagnosing inconclusive or noisy experiments detecting and mitigating common biases such as peeking selection bias novelty effects seasonality instrumentation errors and network interference and deciding when experiments are appropriate versus alternative evaluation methods. Senior candidates should reason about trade offs between speed and statistical rigor plan safe rollouts and ramping define rollback plans and communicate uncertainty and business implications to technical and non technical stakeholders. For developer facing products candidates should also consider constraints such as small populations cross team effects ethical concerns and special instrumentation needs.

41 questions

Experimentation Methodology and Rigor

Focuses on rigorous experimental methodology and advanced testing approaches needed to produce reliable, actionable results. Topics include statistical power and minimum detectable effect trade offs, multiple hypothesis correction, sequential and interim analysis, variance reduction techniques, heterogenous treatment effects, interference and network effects, bias in online experiments, two stage or multi component testing, multivariate designs, experiment velocity versus validity trade offs, and methods to measure business impact beyond proximal metrics. Senior level discussion includes designing frameworks and practices to ensure methodological rigor across teams and examples of how to balance rapid iteration with safeguards to avoid false positives.

44 questions