InterviewStack.io LogoInterviewStack.io

Backend Engineering & Performance Topics

Backend system optimization, performance tuning, memory management, and engineering proficiency. Covers system-level performance, remote support tools, and infrastructure optimization.

Garbage Collected Memory Management

Covers memory management in managed runtimes that use garbage collection. Topics include the memory model distinguishing value types and reference types, stack and heap allocation patterns, how common garbage collection algorithms work and their runtime impacts such as pause times and allocation throughput, causes of allocation pressure, and strategies to reduce garbage collection overhead. Practical techniques include avoiding boxing, reusing and preallocating collections, using value types or structs for small frequently instantiated data, object pooling, and data oriented design trade offs versus object oriented design for performance. Candidates should also know profiling tools, memory budgeting for constrained platforms such as mobile or game consoles, and platform specific considerations for engines like Unity.

40 questions

Performance Engineering and Cost Optimization

Engineering practices and trade offs for meeting performance objectives while controlling operational cost. Topics include setting latency and throughput targets and latency budgets; benchmarking profiling and tuning across application database and infrastructure layers; memory compute serialization and batching optimizations; asynchronous processing and workload shaping; capacity estimation and right sizing for compute and storage to reduce cost; understanding cost drivers in cloud environments including network egress and storage tiering; trade offs between real time and batch processing; and monitoring to detect and prevent performance regressions. Candidates should describe measurement driven approaches to optimization and be able to justify trade offs between cost complexity and user experience.

40 questions

Performance and Code Optimization

Covers techniques and decision making for improving application and code performance across levels from algorithm and memory access patterns to frontend bundling and runtime behavior. Candidates should be able to profile and identify bottlenecks, apply low level optimizations such as loop unrolling, function inlining, cache friendly access patterns, reducing branching, and smart memory layouts, and use compiler optimizations effectively. It also includes higher level application and frontend optimizations such as code splitting and lazy loading, tree shaking and dead code elimination, minification and compression, dynamic imports, service worker based caching, prefetching strategies, server side rendering versus client side rendering trade offs, static site generation considerations, and bundler optimization with tools like webpack Vite and Rollup. Emphasize measurement first and avoiding premature optimization, and explain the trade offs between performance gains and added complexity or maintenance burden. At senior levels expect ability to make intentional trade off decisions and justify which optimizations are worth their complexity for a given system and workload.

0 questions

Optimization and Technical Trade Offs

Focuses on evaluating and improving solutions with attention to trade offs between performance, resource usage, simplicity, and reliability. Topics include analyzing time complexity and space complexity, choosing algorithms and data structures with appropriate trade offs, profiling and measuring real bottlenecks, deciding when micro optimizations are worthwhile versus algorithmic changes, and explaining why a less optimal brute force approach may be acceptable in certain contexts. Also cover maintainability versus performance, concurrency and latency trade offs, and cost implications of optimization decisions. Candidates should justify choices with empirical evidence and consider incremental and safe optimization strategies.

0 questions