InterviewStack.io LogoInterviewStack.io
đŸ“ˆ

Growth & Business Optimization Topics

Growth strategies, experimentation frameworks, and business optimization. Includes A/B testing, conversion optimization, and growth playbooks.

Experiment Design and Execution

Covers end to end design and execution of experiments and A B tests, including identifying high value hypotheses, defining treatment variants and control, ensuring valid randomization, defining primary and guardrail metrics, calculating sample size and statistical power, instrumenting events, running analyses and interpreting results, and deciding on rollout or rollback. Also includes building testing infrastructure, establishing organizational best practices for experimentation, communicating learnings, and discussing both successful and failed tests and their impact on product decisions.

51 questions

Experimentation Velocity and Iteration Mindset

Demonstrate a bias toward rapid experimentation and continuous iteration. At junior level, this means showing comfort with speed-over-perfection thinking: running small, fast experiments to learn quickly rather than lengthy planning cycles. Discuss how you prioritize learning speed, discuss experiments that 'failed' but taught you valuable lessons, and show examples of iterating rapidly based on data. Mention tools and processes that enabled experimentation velocity (e.g., running 3-4 tests per week, using no-code testing tools, rapid prototyping). Show that you view marketing as a series of controlled experiments rather than campaigns executed once.

40 questions

A and B Test Design

Designing and running A and B tests and split tests to evaluate product and feature changes. Candidates should be able to form clear null and alternative hypotheses, select appropriate primary metrics and guardrail metrics that reflect both product goals and user safety, choose randomization and assignment strategies, and calculate sample size and test duration using power analysis and minimum detectable effect reasoning. They should understand applied statistical analysis concepts including p values confidence intervals one tailed and two tailed tests sequential monitoring and stopping rules and corrections for multiple comparisons. Practical abilities include diagnosing inconclusive or noisy experiments detecting and mitigating common biases such as peeking selection bias novelty effects seasonality instrumentation errors and network interference and deciding when experiments are appropriate versus alternative evaluation methods. Senior candidates should reason about trade offs between speed and statistical rigor plan safe rollouts and ramping define rollback plans and communicate uncertainty and business implications to technical and non technical stakeholders. For developer facing products candidates should also consider constraints such as small populations cross team effects ethical concerns and special instrumentation needs.

44 questions

A/B Testing and Optimization Methodology

Discuss your experience designing and running A/B tests on content elements: headlines, formats, messaging, calls-to-action, visual design, content length, etc. Share specific examples of tests you've run with results and how you implemented learnings. Discuss statistical significance and proper experimental design. Show how you prioritize testing opportunities and build a testing roadmap.

45 questions

Experimentation Methodology and Rigor

Focuses on rigorous experimental methodology and advanced testing approaches needed to produce reliable, actionable results. Topics include statistical power and minimum detectable effect trade offs, multiple hypothesis correction, sequential and interim analysis, variance reduction techniques, heterogenous treatment effects, interference and network effects, bias in online experiments, two stage or multi component testing, multivariate designs, experiment velocity versus validity trade offs, and methods to measure business impact beyond proximal metrics. Senior level discussion includes designing frameworks and practices to ensure methodological rigor across teams and examples of how to balance rapid iteration with safeguards to avoid false positives.

40 questions

Experimentation and Product Validation

Designing and interpreting experiments and validation strategies to test product hypotheses. Includes hypothesis formulation, experimental design, sample sizing considerations, metrics selection, interpreting results and statistical uncertainty, and avoiding common pitfalls such as peeking and multiple hypothesis testing. Also covers qualitative validation methods such as interviews and pilots, and using a mix of methods to validate product ideas before scaling.

0 questions